Advanced Hybrid Controller

hase

Dr. Robert Wills, P.E.
Chief Technology Officer
Advanced Energy
Wilton, NH 03086

Acknowledgements: U.S. DOE Energy Storage Program
Sandia National Laboratories
Garth Corey & John Boyes

WWW.ADVANCEDENERGY.COM

About Advanced Energy

- Inverter Manufacturer based in Wilton, NH
- 28% owned by Plug Power
- More than 2000 GC-1000 inverters in the field.
- 200 10kW inverters shipped for Plug Power fuel cell systems this year
- MM-5000 inverter started shipping in September
- \$3.8 Million in sales in 2001

ACT- Our World Class Manufacturing Partner

- All Manufacturing is handled by ACT in Marlboro, MA (a 45-minute drive from AEI)
 - 200K sq. ft manufacturing
 - ISO 9001 qualified
 - Full Box Build/direct order fulfillment

More about AEI

- Hybrid systems to 150 kW in the past
- Worked on the development of IEEE 929, 1547, and the New York Std Interconnect Requirements.
- Member of the National Electrical Code Panel 14 (Photovoltaics and Fuel Cells).
- Fundamental Anti-Islanding Patent

The Multimode 5000

- 3 kW & 5 kW Power Management Systems
- The one box solution to PV power management:
 - Sells excess power to the grid
 - Provides reliable power when the grid fails
 - Interfaces with a backup generator
 - Integrated Controller

Block Diagram

- > 100A MPPT DC-DC Converter ~ 5kW PWM sinewave inverter
 - Connections:
 - » DC: PV, Battery
 - » AC: Load, Grid, Generator
 - » Comm: Opto-isolated RS485
 - » Control: Auto Generator Start

The Advanced Hybrid Controller Project

Aim

To improve hybrid & minigrid power system performance by:

- »Simplifying Integration
- »Increasing Reliability
- »Reducing Cost
- »Increasing Flexibility

Summary of Phase I Results

- Identified need for:
 - A Standard Component Communications Protocol
 - Separation of Inverter and Controller
- Droop mode control is the optimal means for paralleling multiple units in standalone mode
- Heuristic optimization of single-unit systems

Phase II Tasks

- A single-unit AHC controller with working hardware
- Protocols for controller to inverter, and remote controller communications
- Global optimization program. Analyzes data logs, determines optimum operational setpoints
- Minigrid simulator in object oriented (C++)
 code. Test bed for aggregation and optimal SA
 & DR dispatch algorithms

Advanced Hybrid Controller (AHC)

- Intel 386 with DOS
- ERTOS real time operating system
- > 8+ MB data storage

- RS-485 Local Communications
- > RS-232 for console or modem
- Ethernet port
- Two versions rack mount and modular
- Hardware cost \$200-\$400 in low quantity

Demonstration Hybrid System Components

The AHC has Internet Connectivity!

- TCP/IP Protocol Stack
- FTP (file transfer)
- HTTP (Web page data display)
- Telnet (remote console control)
- PPP dial out to Internet Service Provider (ISP)
- PPP dial in from any computer (AHC is PPP server)
- Allows connection via local ISP (continuously or periodically) for control and monitoring

Using the Internet for DG Communications

- As DR becomes more widespread, the need for communications will increase. Using ISPs and the Internet will eliminate the need for private networks or modem banks
- This is a much lower cost alternative for utilities as the infrastructure is already in place.
- Encrypted data can be securely transferred over the internet

DR Control Example

DR Control Example – Economic Analysis

- Customer buys system for the UPS / home autonomy function. Purchase supported by State incentive program. Battery is customer owned
- Customer benefits from free system monitoring
- Utility pays for communications equipment
- Up to 100 cycles per year to 50% DOD will have little impact on battery life (500 kWh / year)
- Marginal cost is communications equipment, maintenance
 & management (E.g. \$250 over 10 years = \$25/year)
- Cost/kWh could be as low as \$0.05/kWh

Energy Storage Optimization

- AHC can easily be programmed with advanced charging algorithms such as partial state of charge
- Standard & Peukert corrected AH counting algorithms
- Historical estimates of load and solar resource for minimal PV "spillage"

Potential Markets

- Remote & Village Power
 - Half the world's population does not have electricity (2+ billion people)
- DR Monitoring and Control
 - Distributed Energy Storage
 - Field node for DR Aggregation & resource scheduling and optimization

Task 2: Communications Protocols

- Internal Problem
 - Controller to inverter protocol definition is complete.
 - Low Security requirements
- External Problem
 - Internet is best solution
 - Encryption is key

Task 3: Global Dispatch Optimization

- Two approaches
 - setpoint optimization with rule-based controller
 - system optimization
- Increases in processing power make systemlevel optimization possible
- Exploring genetic algorithms for this application
 - Using same method to optimize DR dispatch as was used to optimize our own evolution
- Working with students at Dartmouth College

Complex Cost Example

Combined cost curves can give the dispatch function multiple minima

Task 4 – Mini-grid Simulator

- Test bed for DR Aggregation & Optimal Dispatch
- Original application was for remote stand-alone systems with multiple generators
- Also applicable to mini-grids
- Supports intentional islanding of mini-grid when central generation fails (e.g., facility power)
- Will evolve into an aggregation and dispatch software product

Minigrid Simulator Object Model

Simulator Capabilities

- Simulates multiple:
 - Grid Connect Inverters (GC type)
 - Bi-directional Inverters with Energy Storage (ES type)
 - Generators (Gen Type Diesel, Fuel Cell, Microturbine, etc)
 - Loads

In Grid-Connect and Stand-Alone modes.

Simulator Capabilities

- Data file input or synthetic data for:
 - Solar, Load, Grid Cost & Device Availability
- Device sizing database
- HTML log file
- Manual selection of device availability
- Graphical & CSV file output

Dispatch Strategies – Economics Rule

- In Grid Connect mode
 - Any generation with lower cost than grid is on-line.
 - Recharge energy storage if "off peak"
- In Stand-Alone mode
 - Bring on enough generation to satisfy load, lowest cost first
 - If insufficient, discharge ES. If excess, recharge ES

Simulator Demonstration

